If you are working on optimization with partial differential equations as constraints, you may be interested in the website

“OPTPDE – A Collection of Problems in PDE-Constrained Optimization”, http://www.optpde.net.

If you have developed an algorithm which can handle a certain class of optimization problems you need to do evaluations and tests on how well the method performs. To do so, you need well constructed test problems. This could be either problems where the optimal solution is known analytically our problems where the solution is known with a rigorous error bound obtained with a bullet-proof solver. Both things are not always easy to obtain and OPTPDE shall serve as a resource for such problems. It has been designed by Roland Herzog, Arnd Rösch, Stefan Ulbrich and Winnifried Wollner.

The generation of test instance for optimization problems seems quite important to me and indeed, several things can go wrong if this is not done right. Frequently, one sees tests for optimization routines on problems where the optimal solution is not known. Since there are usually different ways to express optimality conditions it is not always clear how to check for optimality; even more so, if you only check for “approximate optimality”, e.g. up to machine precision. A frequently observed effect is a kind of “trusted method bias”. By this I mean that an optimal solution is calculated by some trusted method and comparing the outcome of the tested routine with this solution. However, the trusted method uses some stopping criterion usually based on some specific set of formulations of optimality conditions and these can be different from what the new method has been tuned to. And most often, the stopping criteria do not give a rigorous error bound for the solution or the optimal objective value.

For sparse reconstruction problems, I dealt with this issue in “Constructing test instance for Basis Pursuit Denoising” (preprint available here) but I think this methodology could be used for other settings as well.

ISMP LogoISMP is over now and I’m already home. I do not have many things to report on from the last day. This is not due the lower quality of the talks but due to the fact that I was a little bit exhausted, as usual at the end of a five-day conference. However, I collect a few things for the record:

  • In the morning I visited the semi-planary by Xiaojun Chenon non-convex and non-smooth minimization with smoothing methods. Not surprisingly, she treated the problem

    \displaystyle \min_x f(x) + \|x\|_p^p

    with convex and smooth {f:{\mathbb R}^n\rightarrow{\mathbb R}} and {0<p<1}. She proposed and analyzed smoothing methods, that is, to smooth the problem a bit to obtain a Lipschitz-continuous objective function {\phi_\epsilon}, minimizing this and then gradually decreasing {\epsilon}. This works, as she showed. If I remember correctly, she also treated “iteratively reweighted least squares” as I described in my previous post. Unfortunately, she did not include the generalized forward-backward methods based on {\text{prox}}-functions for non-convex functions. Kristian and I pursued this approach in our paper Minimization of non-smooth, non-convex functionals by iterative thresholding and some special features of our analysis include:

    • A condition which excludes some (but not all) local minimizers from being global.
    • An algorithm which avoids this non-global minimizers by carefully adjusting the steplength of the method.
    • A result that the number of local minimizers is still finite, even if the problem is posed in {\ell^2({\mathbb N})} and not in {{\mathbb R}^n}.

    Most of our results hold true, if the {p}-quasi-norm is replaced by functions of the form

    \displaystyle \sum_n \phi_n(|x_n|)

    with special non-convex {\phi}, namely fulfilling a list of assumptions like

    • {\phi'(x) \rightarrow \infty} for {x\rightarrow 0} (infinite slope at {0}) and {\phi(x)\rightarrow\infty} for {x\rightarrow\infty} (mild coercivity),
    • {\phi'} strictly convex on {]0,\infty[} and {\phi'(x)/x\rightarrow 0} for {x\rightarrow\infty},
    • for each {b>0} there is {a>0} such that for {x<b} it holds that {\phi(x)>ax^2}, and
    • local integrability of some section of {\partial\phi'(x) x}.

    As one easily sees, {p}-quasi-norms fulfill the assumptions and some other interesting functions as well (e.g. some with very steep slope at {0} like {x\mapsto \log(x^{1/3}+1)}).

  • Jorge Nocedalgave a talk on second-order methods for non-smooth problems and his main example was a functional like

    \displaystyle \min_x f(x) + \|x\|_1

    with a convex and smooth {f}, but different from Xiaojun Chen, he only considered the {1}-norm. His talked is among the best planary talks I have ever attended and it was a great pleasure to listen to him. He carefully explained things and put them in perspective. In the case he skipped slides, he made me feel that I either did not miss an important thing, or understood them even though he didn’t show them He argued that it is not necessarily more expensive to use second order information in contrast to first order methods. Indeed, the {1}-norm can be used to reduce the number of degrees of freedom for a second order step. What was pretty interesting is, that he advocated semismooth Newton methods for this problem. Roland and I pursued this approach some time ago in our paper A Semismooth Newton Method for Tikhonov Functionals with Sparsity Constraints and, if I remember correctly (my notes are not complete at this point), his family of methods included our ssn-method. The method Roland and I proposed worked amazingly well in the cases in which it converged but the method suffered from non-global convergence. We had some preliminary ideas for globalization, which we could not tune enough to retain the speed of the method, and abandoned the topic. Now, that the topic will most probably be revived by the community, I am looking forward to fresh ideas here.

Today I report on two things I came across here at ISMP:

  • The first is a talk by Russell Luke on Constraint qualifications for nonconvex feasibility problems. Luke treated the NP-hard problem of sparsest solutions of linear systems. In fact he did not tackle this problem but the problem to find an {s}-sparse solution of an {m\times n} system of equations. He formulated this as a feasibility-problem (well, Heinz Bauschke was a collaborator) as follows: With the usual malpractice let us denote by {\|x\|_0} the number of non-zero entries of {x\in{\mathbb R}^n}. Then the problem of finding an {s}-sparse solution to {Ax=b} is:

    \displaystyle  \text{Find}\ x\ \text{in}\ \{\|x\|_0\leq s\}\cap\{Ax=b\}.

    In other words: find a feasible point, i.e. a point which lies in the intersection of the two sets. Well, most often feasibility problems involve convex sets but here, the first one given by this “{0}-norm” is definitely not convex. One of the simplest algorithms for the convex feasibility problem is to alternatingly project onto both sets. This algorithm dates back to von Neumann and has been analyzed in great detail. To make this method work for non-convex sets one only needs to know how to project onto both sets. For the case of the equality constraint {Ax=b} one can use numerical linear algebra to obtain the projection. The non-convex constraint on the number of non-zero entries is in fact even easier: For {x\in{\mathbb R}^n} the projection onto {\{\|x\|_0\leq s\}} consists of just keeping the {s} largest entries of {x} while setting the others to zero (known as the “best {s}-term approximation”). However, the theory breaks down in the case of non-convex sets. Russell treated problem in several papers (have a look at his publication page) and in the talk he focused on the problem of constraint qualification, i.e. what kind of regularity has to be imposed on the intersection of the two sets. He could shows that (local) linear convergence of the algorithm (which is observed numerically) can indeed be justified theoretically. One point which is still open is the phenomenon that the method seems to be convergent regardless of the initialization and that (even more surprisingly) that the limit point seems to be independent of the starting point (and also seems to be robust with respect to overestimating the sparsity {s}). I wondered if his results are robust with respect to inexact projections. For larger problems the projection onto the equality constraint {Ax=b} are computationally expensive. For example it would be interesting to see what happens if one approximates the projection with a truncated CG-iteration as Andreas, Marc and I did in our paper on subgradient methods for Basis Pursuit.

  • Joel Tropp reported on his paper Sharp recovery bounds for convex deconvolution, with applications together with Michael McCoy. However, in his title he used demixing instead of deconvolution (which, I think, is more appropriate and leads to less confusion). With “demixing” they mean the following: Suppose you have two signals {x_0} and {y_0} of which you observe only the superposition of {x_0} and a unitarily transformed {y_0}, i.e. for a unitary matrix {U} you observe

    \displaystyle  z_0 = x_0 + Uy_0.

    Of course, without further assumptions there is no way to recover {x_0} and {y_0} from the knowledge of {z_0} and {U}. As one motivation he used the assumption that both {x_0} and {y_0} are sparse. After the big bang of compressed sensing nobody wonders that one turns to convex optimization with {\ell^1}-norms in the following manner:

    \displaystyle   \min_{x,y} \|x\|_1 + \lambda\|y\|_1 \ \text{such that}\ x + Uy = z_0. \ \ \ \ \ (1)

    This looks a lot like sparse approximation: Eliminating {x} one obtains the unconstraint problem \begin{equation*} \min_y \|z_0-Uy\|_1 + \lambda \|y\|_1. \end{equation*}

    Phrased differently, this problem aims at finding an approximate sparse solution of {Uy=z_0} such that the residual (could also say “noise”) {z_0-Uy=x} is also sparse. This differs from the common Basis Pursuit Denoising (BPDN) by the structure function for the residual (which is the squared {2}-norm). This is due to the fact that in BPDN one usually assumes Gaussian noise which naturally lead to the squared {2}-norm. Well, one man’s noise is the other man’s signal, as we see here. Tropp and McCoy obtained very sharp thresholds on the sparsity of {x_0} and {y_0} which allow for exact recovery of both of them by solving (1). One thing which makes their analysis simpler is the following reformulation: The treated the related problem \begin{equation*} \min_{x,y} \|x\|_1 \text{such that} \|y\|_1\leq\alpha, x+Uy=z_0 \end{equation*} (which I would call this the Ivanov version of the Tikhonov-problem (1)). This allows for precise exploitation of prior knowledge by assuming that the number {\alpha_0 = \|y_0\|_1} is known.

    First I wondered if this reformulation was responsible for their unusual sharp results (sharper the results for exact recovery by BDPN), but I think it’s not. I think this is due to the fact that they have this strong assumption on the “residual”, namely that it is sparse. This can be formulated with the help of {1}-norm (which is “non-smooth”) in contrast to the smooth {2}-norm which is what one gets as prior for Gaussian noise. Moreover, McCoy and Tropp generalized their result to the case in which the structure of {x_0} and {y_0} is formulated by two functionals {f} and {g}, respectively. Assuming a kind of non-smoothness of {f} and {g} the obtain the same kind of results and especially matrix decomposition problems are covered.

The scientific program at ISMP started today and I planned to write a small personal summary of each day. However, it is a very intense meeting. Lot’s of excellent talks, lot’s of people to meet and little spare time. So I’m afraid that I have to deviate from my plan a little bit. Instead of a summary of every day I just pick out a few events. I remark that these picks do not reflect quality, significance or something like this in any way. I just pick things for which I have something to record for personal reasons.

My day started after the first plenary which the session Testing environments for machine learning and compressed sensing in which my own talk was located. The session started with the talk by Michael Friedlander of the SPOT toolbox. Haven’t heard of SPOT yet? Take a look! In a nutshell its a toolbox which turns MATLAB into “OPLAB”, i.e. it allows to treat abstract linear operators like matrices. By the way, the code is on github.

The second talk was by Katya Scheinberg (who is giving a semi-planary talk on derivative free optimization at the moment…). She talked about speeding up FISTA by cleverly adjusting step-sizes and over-relaxation parameters and generalizing these ideas to other methods like alternating direction methods. Notably, she used the “SPEAR test instances” from our project homepage! (And credited them as “surprisingly hard sparsity problems”.)

My own talk was the third and last one in that session. I talked about the issue of constructing test instance for Basis Pursuit Denoising. I argued that the naive approach (which takes a matrix {A}, a right hand side {b} and a parameter {\lambda} and let some great solver run for a while to obtain a solution {x^*}) may suffer from “trusted method bias”. I proposed to use “reverse instance construction” which is: First choose {A}, {\lambda} and the solution {x^*} and the construct the right hand side {b} (I blogged on this before here).

Last but not least, I’d like to mention the talk by Thomas Pock: He talked about parameter selection on variational models (think of the regularization parameter in Tikhonov, for example). In a paper with Karl Kunisch titled A bilevel optimization approach for parameter learning in variational models they formulated this as a bi-level optimization problem. An approach which seemed to have been overdue! Although they treat somehow simple inverse problems (well, denoising) (but with not so easy regularizers) it is a promising first step in this direction.

L1TestPack has just been updated to version 1.1. With the help of Andreas Tillmann I enhanced this small gadget for issues related to {\ell^1} minimization. New functions are

  • Routines to directly calculate a source element for a given matrix {A} and a vector {x^\dagger}, that is, calculate a vector {y} such that

    \displaystyle  A^* y \in\partial\|x^\dagger\|_1.

    The existence of such a vector {y} ensures that the minimization problem (the Basis Pursuit problem)

    \displaystyle  \min_x \|x\|_1\ \text{ s.t. }\ Ax = Ax^\dagger

    has the unique solution {x^\dagger} (is other words: {x^\dagger} is recovered exactly). This is particularly helpful is you are interested in unique solutions for Basis pursuit without posing strong conditions which even imply {\ell^0}{\ell^1}-equivalence.

  • Routines related to RIP constants, the ERC coefficient of Joel Tropp and the mutual coherence.
  • An implementation of the heuristic support evaluation HSE (also described in my previous post). (By the way: We were tempted to call this device “support evaluation routine” with acronym SuppER but abandoned this idea.)