### Optimization

I fell a little bit behind on reporting on my new preprints. In this posts I’ll blog on two closely related ones; one of them already a bit old, the other one quite recent:

The papers are

As clear from the titles, both papers treat a similar method. The first paper contains all the theory and the second one has few particularly interesting applications.

In the first paper we propose to view several known algorithms such as the linearized Bregman method, the Kaczmarz method or the Landweber method from a different angle from which they all are special cases of another algorithm. To start with, consider a linear system

$\displaystyle Ax=b$

with ${A\in{\mathbb R}^{m\times n}}$. A fairly simple and old method to solve this, is the Landweber iteration which is

$\displaystyle x^{k+1} = x^k - t_k A^T(Ax^k-b).$

Obviously, this is nothing else than a gradient descent for the functional ${\|Ax-b\|_2^2}$ and indeed converges to a minimizer of this functional (i.e. a least squares solution) if the stepsizes ${t_k}$ fulfill ${\epsilon\leq t_k\leq 2\|A\|^{-2} - \epsilon}$ for some ${\epsilon>0}$. If one initializes the method with ${x^0=0}$ it converges to the least squares solution with minimal norm, i.e. to ${A^\dag b}$ (with the pseudo-inverse ${A^\dag}$).

A totally different method is even older: The Kaczmarz method. Denoting by ${a_k}$ the ${k}$-th row of ${A}$ and ${b_k}$ the ${k}$-th entry of ${b}$ the method reads as

$\displaystyle x^{k+1} = x^k - a_{r(k)}^T\frac{a_{r(k)}\cdot x^k - b_k}{\|a_{r(k)}\|_2^2}$

where ${r(k) = (k\mod m) +1}$ or any other “control sequence” that picks up every index infinitely often. This method also has a simple interpretation: Each equation ${a_k\cdot x = b_k}$ describes a hyperplane in ${{\mathbb R}^n}$. The method does nothing else than projecting the iterates orthogonally onto the hyperplanes in an iterative manner. In the case that the system has a solution, the method converges to one, and if it is initialized with ${x^0=0}$ we have again convergence to the minimum norm solution ${A^\dag b}$.

There is yet another method that solves ${Ax=b}$ (but now it’s a bit more recent): The iteration produces two sequences of iterates

$\displaystyle \begin{array}{rcl} z^{k+1} & = &z^k - t_k A^T(Ax^k - b)\\ x^{k+1} & = &S_\lambda(z^{k+1}) \end{array}$

for some ${\lambda>0}$, the soft-thresholding function ${S_\lambda(x) = \max(|x|-\lambda,0)\mathrm{sgn}(x)}$ and some stepsize ${t_k}$. For reasons I will not detail here, this is called the linearized Bregman method. It also converges to a solution of the system. The method is remarkably similar, but different from, the Landweber iteration (if the soft-thresholding function wouldn’t be there, both would be the same). It converges to the solution of ${Ax=b}$ that has the minimum value for the functional ${J(x) = \lambda\|x\|_1 + \tfrac12\|x\|_2^2}$. Since this solution of close, and for ${\lambda}$ large enough identical, to the minimum ${\|\cdot\|_1}$ solution, the linearized Bregman method is a method for sparse reconstruction and applied in compressed sensing.

Now we put all three methods in a joint framework, and this is the framework of split feasibility problems (SFP). An SFP is a special case of a convex feasibility problems where one wants to find a point ${x}$ in the intersection of multiple simple convex sets. In an SFP one has two different kinds of convex constraints (which I will call “simple” and “difficult” in the following):

1. Constraints that just demand that ${x\in C_i}$ for some convex sets ${C_i}$. I call these constraints “simple” because we assume that the projection onto each ${C_i}$ is simple to obtain.
2. Constraints that demand ${A_ix\in Q_i}$ for some matrices ${A_i}$ and simple convex sets ${Q_i}$. Although we assume that projections onto the ${Q_i}$ are easy, these constraints are “difficult” because of the presence of the matrices ${A_i}$.

If there were only simple constraints a very basic method to solve the problem is the methods of alternating projections, also known as POCS (projection onto convex sets): Simply project onto all the sets ${C_i}$ in an iterative manner. For difficult constraints, one can do the following: Construct a hyperplane ${H_k}$ that separates the current iterate ${x^k}$ from the set defined by the constraint ${Ax\in Q}$ and project onto the hyperplane. Since projections onto hyperplanes are simple and since the hyperplane separates we move closer to the constraint set and this is a reasonable step to take. One such separating hyperplane is given as follows: For ${x^k}$ compute ${w^k = Ax^k-P_Q(Ax^k)}$ (with the orthogonal projection ${P_Q}$) and define

$\displaystyle H_k = \{x\ : (A^Tw^k)^T\cdot x \leq (A^Tw^k)^T\cdot x^k - \|w^k\|_2^2\}.$

Illustration of projections onto convex sets and separating hyperplanes

Now we already can unite the Landweber iteration and the Kaczmarz method as follows: Consider the system ${Ax=b}$ as a split feasibility problem in two different ways:

1. Treat ${Ax=b}$ as one single difficult constraint (i.e. set ${Q=\{b\}}$). Some calculations show that the above proposed method leads to the Landweber iteration (with a special stepsize).
2. Treat ${Ax=b}$ as ${m}$ simple constraints ${a_i\cdot x = b_i}$. Again, some calculations show that this gives the Kaczmarz method.

Of course, one could also work “block-wise” and consider groups of equations as difficult constraints to obtain “block-Kaczmarz methods”.

Now comes the last twist: By adapting the term of “projection” one gets more methods. Particularly interesting is the notion of Bregman projections which comes from Bregman distances. I will not go into detail here, but Bregman distances are associated to convex functionals ${J}$ and by replacing “projection onto ${C_i}$ or hyperplanes” by respective Bregman projections, one gets another method for split feasibility problems. The two things I found remarkable:

• The Bregman projection onto hyperplanes is pretty simple. To project some ${x^k}$ onto the hyperplane ${H = \{x\ :\ a^T\cdot x\leq \beta\}}$, one needs a subgradient ${z^k\in\partial J(x^k)}$ (in fact an “admissible one” but for that detail see the paper) and then performs

$\displaystyle x^{k+1} = \nabla J^*(z^k - t_k a)$

(${J^*}$ is the convex dual of ${J}$) with some appropriate stepsize ${t_k}$ (which is the solution of a one-dimensional convex minimization problem). Moreover, ${z^{k+1} = z^k - t_k a}$ is a new admissible subgradient at ${x^{k+1}}$.

• If one has a problem with a constraint ${Ax=b}$ (formulated as an SFP in one way or another) the method converges to the minimum-${J}$ solution of the equation if ${J}$ is strongly convex.

Note that strong convexity of ${J}$ implies differentiability of ${J^*}$ and Lipschitz continuity of ${\nabla J}$ and hence, the Bregman projection can indeed be carried out.

Now one already sees how this relates to the linearized Bregman method: Setting ${J(x) = \lambda\|x\|_1 + \tfrac12\|x\|_2^2}$, a little calculation shows that

$\displaystyle \nabla J^*(z) = S_\lambda(z).$

Hence, using the formulation with a “single difficult constraint” leads to the linearized Bregman method with a specific stepsize. It turns out that this stepsize is a pretty good one but also that one can show that a constant stepsize also works as long as it is positive and smaller that ${2\|A\|^{-2}}$.

In the paper we present several examples how one can use the framework. I see one strengths of this approach that one can add convex constraints to a given problem without getting into any trouble with the algorithmic framework.

The second paper extends a remark that we make in the first one: If one applies the framework of the linearized Bregman method to the case in which one considers the system ${Ax=b}$ as ${m}$ simple (hyperplane-)constraints one obtains a sparse Kaczmarz solver. Indeed one can use the simple iteration

$\displaystyle \begin{array}{rcl} z^{k+1} & = &z^k - a_{r(k)}^T\frac{a_{r(k)}\cdot x^k - b_k}{\|a_{r(k)}\|_2^2}\\ x^{k+1} & = &S_\lambda(z^{k+1}) \end{array}$

and will converge to the same sparse solution as the linearized Bregman method.

This method has a nice application to “online compressed sensing”: We illustrate this in the paper with an example from radio interferometry. There, large arrays of radio telescopes collect radio emissions from the sky. Each pair of telescopes lead to a single measurement of the Fourier transform of the quantity of interest. Hence, for ${k}$ telescopes, each measurement gives ${k(k-1)/2}$ samples in the Fourier domain. In our example we used data from the Very Large Array telescope which has 27 telescopes leading to 351 Fourier samples. That’s not much, if one want a picture of the emission with several ten thousands of pixels. But the good thing is that the Earth rotates (that’s good for several reasons): When the Earth rotates relative to the sky, the sampling pattern also rotates. Hence, one waits a small amount of time and makes another measurement. Commonly, this is done until the earth has made a half rotation, i.e. one complete measurement takes 12 hours. With the “online compressed sensing” framework we proposed, one can start reconstructing the image as soon the first measurements have arrived. Interestingly, one observes the following behavior: If one monitors the residual of the equation, it goes down during iterations and jumps up when new measurements arrive. But from some point on, the residual stays small! This says that the new measurements do not contradict the previous ones and more interestingly this happened precisely when the reconstruction error dropped down such that “exact reconstruction” in the sense of compressed sensing has happened. In the example of radio interferometry, this happened after 2.5 hours!

Reconstruction by online compressed sensing

You can find slides of a talk I gave at the Sparse Tomo Days here.

I recently updated my working hardware and now use a tablet pc for work (namely a Nexus 10). In consequence, I also updated the software I used to have things more synchronized across devices. For my RSS feeds I now use feedly and the gReader app. However, I was not that happy with the method to store and mark paper I found but found the sharing interfaces between the apps pretty handy. I adopted the workflow that when I see a paper that I want to remember I sent them to my Evernote account where I tag them. Then, from time to time I go over the papers I marked and have a more detailed look. If I think, they deserve to be kept for future reference, they get a small entry here. Here’s the first take with just two papers from the last weeks (there are more in my backlog…):

On the convergence rate improvement of a primal-dual splitting algorithm for solving monotone inclusion problems by Radu Ioan Boţ, Ernö Robert Csetnek, André Heinrich, Christopher Hendrich (Math Prog): As first sight, I found this work pretty inaccessible but the title sounded interesting. I was a bit scared by the formula for the kind of problems they investigated: Solve the following inclusion for ${x}$

$\displaystyle 0 \in z + Ax + \sum_{i=1}^m L_i^*((B_i\square D_i)(L_ix -r_i)) + Cx$

where ${A}$, ${B_i}$ and ${D_i}$ are maximally monotone, ${D_i}$ also ${\nu_i}$ strongly monotone, ${C}$ is ${\eta}$-coercive, ${L_i}$ are linear and bounded and ${\square}$ denotes the parallel sum, i.e. ${A\square B = (A^{-1}+B^{-1})^{-1}}$. Also the proposed algorithm looked a bit like a monster. Then, on later pager, things became a bit more familiar. As an application, they considered the optimization problem

$\displaystyle \min_x f(x) + \sum_{i=1}^m (g_i\square l_i)(L_ix - r_i) + h(x) - \langle x,z\rangle$

with convex ${f}$, ${g_i}$, ${l_i}$ (${l_i}$ ${\nu_i^{-1}}$ strongly convex), ${h}$ convex with ${\eta}$-Lipschitz gradient and ${L_i}$ as above. By noting that the parallel sum is related to the infimal convolution of convex functions, things became clearer. Also, the algorithm looks more familiar now (Algorithm 18 in the paper – I’m too lazy to write it down here). They have an analysis of the algorithms that allow to deduce convergence rates for the iterates (usually ${\mathcal{O}(1/n)}$) but I haven’t checked the details yet.

Sparse Regularization: Convergence Of Iterative Jumping Thresholding Algorithm by Jinshan Zeng, Shaobo Lin, Zongben Xu: At first I was excited but then I realized that they simple tackled

$\displaystyle \min F + \lambda \Phi$

with smooth ${F}$ and non-smooth, non-convex ${\Phi}$ by “iterative thresholding”, i.e.

$\displaystyle x^{n+1} = \mathrm{prox}_{\mu\lambda\Phi}(x^n - \mu \nabla F(x^n)).$

The paper really much resembles what Kristian and I did in the paper Minimization of non-smooth, non-convex functionals by iterative thresholding (at least I couldn’t figure out the improvements…).

Today I’d like to collect some comments one a few papers I stumbled upon recently on the arXiv.

1. TGV minimizers in 1D

First, about a month ago two very similar paper appeared in the same week:

Both papers treat the recently proposed “total generalized variation” model (which is a somehow-but-not-really-higher-order generalization of total variation). The total variation of a function ${u\in L^1(\Omega)}$ (${\Omega\subset{\mathbb R}^d}$) is defined by duality

$\displaystyle TV(u) = \sup\Big\{\int_\Omega \mathrm{div} \phi\, u\,dx\ :\ \phi\in C^\infty_c(\Omega,{\mathbb R}^d), |\phi|\leq 1\Big\}.$

(Note that the demanded high regularity of the test functions ${\phi}$ is not essential here, as we take a supremum over all these functions under the only, but important, requirement that the functions are bounded. Test functions from ${C^1_c(\Omega,{\mathbb R}^d)}$ would also do.)

Several possibilities for extensions and generalization of the total variation exist by somehow including higher order derivatives. The “total generalized variation” is a particular successful approach which reads as (now using two non-negative parameter ${\alpha,\beta}$ which do a weighting):

$\displaystyle TGV_{\beta,\alpha}^2(u) = \sup\Big\{\int_\Omega \mathrm{div}^2 \phi\, u\,dx\ :\ \phi\in C^\infty_c(\Omega,S^{d\times d}),\ |\phi|\leq \beta,\ |\mathrm{div}\phi|\leq \alpha\Big\}.$

To clarify some notation: ${S^{d\times d}}$ are the symmetric ${d\times d}$ matrices, ${\mathrm{div}^n}$ is the negative adjoint of ${\nabla^n}$ which is the differential operator that collects all partial derivatives up to the ${n}$-th order in a ${d\times\cdots\times d}$-tensor. Moreover ${|\phi|}$ is some matrix norm (e.g. the Frobenius norm) and ${|\mathrm{div}\phi|}$ is some vector norm (e.g. the 2-norm).

Both papers investigate so called denoising problems with TGV penalty and ${L^2}$ discrepancy, i.e. minimization problems

$\displaystyle \min_u \frac12\int_\Omega(u-u^0)^2\, dx + TGV_{\alpha,\beta}^2(u)$

for a given ${u^0}$. Moreover, both papers treat the one dimensional case and investigate very special cases in which they calculate minimizers analytically. In one dimension the definition of ${TGV^2}$ becomes a little more familiar:

$\displaystyle TGV_{\beta,\alpha}^2(u) = \sup\Big\{\int_\Omega \phi''\, u\,dx\ :\ \phi\in C^\infty_c(\Omega,{\mathbb R}),\ |\phi|\leq \beta,\ |\phi'|\leq \alpha\Big\}.$

Some images of both papar are really similar: This one from Papafitsoros and Bredies

and this one from Pöschl and Scherzer

Although both paper have a very similar scopes it is worth to read both. The calculations are tedious but both paper try to make them accessible and try hard (and did a good job) to provide helpful illustrations. Curiously, the earlier paper cites the later one but not conversely…

2. Generalized conditional gradient methods

Another paper I found very interesting was

This paper shows a nice duality which I haven’t been aware of, namely the one between the subgradient descent methods and conditional gradient methods. In fact the conditional gradient method which is treated is a generalization of the conditional gradient method which Kristian and I also proposed a while ago in the context of ${\ell^1}$-minimization in the paper Iterated hard shrinkage for minimization problems with sparsity constraints: To minimize the sum

$\displaystyle F(u) + \Phi(u)$

with a differentiable ${F}$ and a convex ${\Phi}$ for which the subgradient of ${\Phi}$ is easily invertible (or, put differently, for which you can minimize ${\langle u,a\rangle + \Phi(u)}$ easily), perform the following iteration:

1. At iterate ${u^n}$ linearize ${F}$ but not ${\Phi}$ and calculate a new point ${v^n}$ by

$\displaystyle v^n = \mathrm{argmin}_v \langle F'(u^n),v\rangle + \Phi(v)$

2. Choose a stepsize ${s^n\in [0,1]}$ and set the next iterate as a convex combination of ${u^n}$ and ${v^n}$

$\displaystyle u^{n+1} = u^n + s_n(v^n - u^n).$

Note that for and indicator function

$\displaystyle \Phi(u) = \begin{cases} 0 & u\in C\\ \infty & \text{else} \end{cases}$

you obtain the conditional gradient method (also known as Frank-Wolfe method). While Kristian and I derived convergence with an asymptotic rate for the case of ${F(u) = \tfrac12\|Ku-f\|^2}$ and ${\Phi}$ strongly coercive, Francis uses the formulation ${F(u) = f(Au)}$ the assumption that the dual ${f^*}$ of ${f}$ has a bounded effective domain (which say that ${f}$ has linear growth in all directions). With this assumption he obtains explicit constants and rates also for the primal-dual gap. It was great to see that eventually somebody really took the idea from the paper Iterated hard shrinkage for minimization problems with sparsity constraints (and does not think that we do heuristics for ${\ell^0}$ minimization…).

The mother example of optimization is to solve problems

$\displaystyle \min_{x\in C} f(x)$

for functions ${f:{\mathbb R}^n\rightarrow{\mathbb R}}$ and sets ${C\in{\mathbb R}^n}$. One further classifies problems according to additional properties of ${f}$ and ${C}$: If ${C={\mathbb R}^n}$ one speaks of unconstrained optimization, if ${f}$ is smooth one speaks of smooth optimization, if ${f}$ and ${C}$ are convex one speaks of convex optimization and so on.

1. Classification, goals and accuracy

Usually, optimization problems do not have a closed form solution. Consequently, optimization is not primarily concerned with calculating solutions to optimization problems, but with algorithms to solve them. However, having a convergent or terminating algorithm is not fully satisfactory without knowing an upper bound on the runtime. There are several concepts one can work with in this respect and one is the iteration complexity. Here, one gives an upper bound on the number of iterations (which are only allowed to use certain operations such as evaluations of the function ${f}$, its gradient ${\nabla f}$, its Hessian, solving linear systems of dimension ${n}$, projecting onto ${C}$, calculating halfspaces which contain ${C}$, or others) to reach a certain accuracy. But also for the notion of accuracy there are several definitions:

• For general problems one can of course desire to be within a certain distance to the optimal point ${x^*}$, i.e. ${\|x-x^*\|\leq \epsilon}$ for the solution ${x^*}$ and a given point ${x}$.
• One could also demand that one wants to be at a point which has a function value close to the optimal one ${f^*}$, i.e, ${f(x) - f^*\leq \epsilon}$. Note that for this and for the first point one could also desire relative accuracy.
• For convex and unconstrained problems, one knowns that the inclusion ${0\in\partial f(x^*)}$ (with the subgradient ${\partial f(x)}$) characterizes the minimizers and hence, accuracy can be defined by desiring that ${\min\{\|\xi\|\ :\ \xi\in\partial f(x)\}\leq \epsilon}$.

It turns out that the first two definitions of accuracy are much to hard to obtain for general problems and even for smooth and unconstrained problems. The main issue is that for general functions one can not decide if a local minimizer is also a solution (i.e. a global minimizer) by only considering local quantities. Hence, one resorts to different notions of accuracy, e.g.

• For a smooth, unconstrained problems aim at stationary points, i.e. find ${x}$ such that ${\|\nabla f(x)\|\leq \epsilon}$.
• For smoothly constrained smooth problems aim at “approximately KKT-points” i.e. a point that satisfies the Karush-Kuhn-Tucker conditions approximately.

(There are adaptions to the nonsmooth case that are in the same spirit.) Hence, it would be more honest not write ${\min_x f(x)}$ in these cases since this is often not really the problem one is interested in. However, people write “solve ${\min_x f(x)}$” all the time even if they only want to find “approximately stationary points”.

2. The gradient method for smooth, unconstrainted optimization

Consider a smooth function ${f:{\mathbb R}^n\rightarrow {\mathbb R}}$ (we’ll say more precisely how smooth in a minute). We make no assumption on convexity and hence, we are only interested in finding stationary points. From calculus in several dimensions it is known that ${-\nabla f(x)}$ is a direction of descent from the point ${x}$, i.e. there is a value ${h>0}$ such that ${f(x - h\nabla f(x))< f(x)}$. Hence, it seems like moving into the direction of the negative gradient is a good idea. We arrive at what is known as gradient method:

$\displaystyle x_{k+1} = x_k - h_k \nabla f(x_k).$

Now let’s be more specific about the smoothness of ${f}$. Of course we need that ${f}$ is differentiable and we also want the gradient to be continuous (to make the evaluation of ${\nabla f}$ stable). It turns out that some more smoothness makes the gradient method more efficient, namely we require that the gradient of ${f}$ is Lipschitz continuous with a known Lipschitz constant ${L}$. The Lipschitz constant can be used to produce efficient stepsizes ${h_k}$, namely, for ${h_k = 1/L}$ one has the estimate

$\displaystyle f(x_k) - f(x_{k+1})\geq \frac{1}{2L}\|\nabla f(x_k)\|^2.$

This inequality is really great because one can use telescoping to arrive at

$\displaystyle \frac{1}{2L}\sum_{k=0}^N \|\nabla f(x_k)\|^2 \leq f(x_0) - f(x_{N+1}) \leq f(x_0) - f^*$

with the optimal value ${f}$ (note that we do not need to know ${f^*}$ for the following). We immediately arrive at

$\displaystyle \min_{0\leq k\leq N} \|\nabla f(x_k)\| \leq \frac{1}{\sqrt{N+1}}\sqrt{2L(f(x_0)-f^*))}.$

That’s already a result on the iteration complexity! Among the first ${N}$ iterates there is one which has a gradient norm of order ${N^{-1/2}}$.

However, from here on it’s getting complicated: We can not say anything about the function values ${f(x_k)}$ and about convergence of the iterates ${x_k}$. And even for convex functions ${f}$ (which allow for more estimates from above and below) one needs some more effort to prove convergence of the functional values to the global minimal one.

But how about convergence of the iterates for the gradient method if convexity is not given? It turns out that this is a hard problem. As illustration, consider the continuous case, i.e. a trajectory of the dynamical system

$\displaystyle \dot x = -\nabla f(x)$

(which is a continuous limit of the gradient method as the stepsize goes to zero). A physical intuition about this dynamical system in ${{\mathbb R}^2}$ is as follows: The function ${f}$ describes a landscape and ${x}$ are the coordinates of an object. Now, if the landscape is slippery the object slides down the landscape and if we omit friction and inertia, the object will always slide in the direction of the negative gradient. Consider now a favorable situation: ${f}$ is smooth, bounded from below and the level sets ${\{f\leq t\}}$ are compact. What can one say about the trajectories of the ${\dot x = -\nabla f(x)}$? Well, it seems clear that one will arrive at a local minimum after some time. But with a little imagination one can see that the trajectory of ${x}$ does not even has to be of finite length! To see this consider a landscape ${f}$ that is a kind of bowl-shaped valley with a path which goes down the hillside in a spiral way such that it winds around the minimum infinitely often. This situation seems somewhat pathological and one usually does not expect situation like this in practice. If you tried to prove convergence of the iterates of gradient or subgradient descent you may have noticed that one sometimes wonders why the proof turns out to be so complicated. The reason lies in the fact that such pathological functions are not excluded. But what functions should be excluded in order to avoid this pathological behavior without restricting to too simple functions?

3. The Kurdyka-Łojasiewicz inequality

Here comes the so-called Kurdyka-Łojasiewicz inequality into play. I do not know its history well, but if you want a pointer, you could start with the paper “On gradients of functions definable in o-minimal structures” by Kurdyka.

The inequality shall be a way to turn a complexity estimate for the gradient of a function into a complexity estimate for the function values. Hence, one would like to control the difference in functional value by the gradient. One way to do so is the following:

Definition 1 Let ${f}$ be a real valued function and assume (without loss of generality) that ${f}$ has a unique minimum at ${0}$ and that ${f(0)=0}$. Then ${f}$ satisfies a Kurdyka-Łojasiewicz inequality if there exists a differentiable function ${\kappa:[0,r]\rightarrow {\mathbb R}}$ on some interval ${[0,r]}$ with ${\kappa'>0}$ and ${\kappa(0)=0}$ such that

$\displaystyle \|\nabla(\kappa\circ f)(x)\|\geq 1$

for all ${x}$ such that ${f(x).

Informally, this definition ensures that that one can “reparameterize the range of the function such that the resulting function has a kink in the minimum and is steep around that minimum”. This definition is due to the above paper by Kurdyka from 1998. In fact it is a slight generalization of the Łowasiewicz inequality (which dates back to a note of Łojasiewicz from 1963) which states that there is some ${C>0}$ and some exponent ${\theta}$ such that in the above situation it holds that

$\displaystyle \|\nabla f(x)\|\geq C|f(x)|^\theta.$

To that that, take ${\kappa(s) = s^{1-\theta}}$ and evaluate the gradient to ${\nabla(\kappa\circ f)(x) = (1-\theta)f(x)^{-\theta}\nabla f(x)}$ to obtain ${1\leq (1-\theta)|f(x)|^{-\theta}\|\nabla f(x)\|}$. This also makes clear that in the case the inequality is fulfilled, the gradient provides control over the function values.

The works of Łojasiewicz and Kurdyka show that a large class of functions ${f}$ fulfill the respective inequalities, e.g. piecewise analytic function and even a larger class (termed o-minimal structures) which I haven’t fully understood yet. Since the Kurdyka-Łojasiewicz inequality allows to turn estimates from ${\|\nabla f(x_k)\|}$ into estimates of ${|f(x_k)|}$ it plays a key role in the analysis of descent methods. It somehow explains, that one really never sees pathological behavior such as infinite minimization paths in practice. Lately there have been several works on further generalization of the Kurdyka-Łojasiewicz inequality to the non-smooth case, see e.g. Characterizations of Lojasiewicz inequalities: subgradient flows, talweg, convexity by Bolte, Daniilidis, Ley and Mazet Convergence of non-smooth descent methods using the Kurdyka-Łojasiewicz inequality by Noll (however, I do not try to give an overview over the latest developments here). Especially, here at the French-German-Polish Conference on Optimization which takes place these days in Krakow, the Kurdyka-Łojasiewicz inequality has popped up several times.

A quick post to keep track of several things:

• Christian Leonard  has lecture notes on convex optimization with an application to optimal transport on his website.
• The paper Variational Properties of Value Functions by  Aravkin, Burke, and Friedlander discuss how the value of minimization problems like $\min \rho(Ax-b)\quad \mbox{s.t}\quad \phi(x)\leq tau$ depend on $\tau$ and $\latex b$. In inverse problems, the value function seems to contain important information on the the regularization process and hence, the results in this paper maybe helpful in designing and analyzing parameter choice rules.
• The paper Accelerated and Inexact Forward-Backward Algorithms by Villa,Salzo, Baldassarre, and Verri looks like an interesting development in the fiel of splitting methods.
• The paper  Consistency of the posterior distribution in generalized linear inverse problems by Natalia Bochkina is another contribution on “probabilitic inverse problems” where one does not only try to infer a regularized solution to an ill posed problems but also how the uncertainty in the data in propagated through the regularization process.

Another few notes to myself:

If you are working on optimization with partial differential equations as constraints, you may be interested in the website

“OPTPDE – A Collection of Problems in PDE-Constrained Optimization”, http://www.optpde.net.

If you have developed an algorithm which can handle a certain class of optimization problems you need to do evaluations and tests on how well the method performs. To do so, you need well constructed test problems. This could be either problems where the optimal solution is known analytically our problems where the solution is known with a rigorous error bound obtained with a bullet-proof solver. Both things are not always easy to obtain and OPTPDE shall serve as a resource for such problems. It has been designed by Roland Herzog, Arnd Rösch, Stefan Ulbrich and Winnifried Wollner.

The generation of test instance for optimization problems seems quite important to me and indeed, several things can go wrong if this is not done right. Frequently, one sees tests for optimization routines on problems where the optimal solution is not known. Since there are usually different ways to express optimality conditions it is not always clear how to check for optimality; even more so, if you only check for “approximate optimality”, e.g. up to machine precision. A frequently observed effect is a kind of “trusted method bias”. By this I mean that an optimal solution is calculated by some trusted method and comparing the outcome of the tested routine with this solution. However, the trusted method uses some stopping criterion usually based on some specific set of formulations of optimality conditions and these can be different from what the new method has been tuned to. And most often, the stopping criteria do not give a rigorous error bound for the solution or the optimal objective value.

For sparse reconstruction problems, I dealt with this issue in “Constructing test instance for Basis Pursuit Denoising” (preprint available here) but I think this methodology could be used for other settings as well.

There are several answers to the following question:

1. What is a convex set?

For a convex set you probably know these definitions:

Definition 1 A subset ${C}$ of a real vector space ${V}$ is convex if for any ${x,y\in C}$ and ${\lambda\in[0,1]}$ it holds that ${\lambda x + (1-\lambda)y\in C}$.

In other words: If two points lie in the set, then every convex combination also lies in the set.

While this is a “definition from the inside”, convex sets can also be characterized “from the outside”. We add closedness as an assumption and get:

Definition 2 A closed subset ${C}$ of a real locally convex topological vector space ${V}$ is convex if it is the intersection of closed halfspaces (i.e. sets of the form ${\{x\in V\ :\ \langle a,x\rangle\geq c\}}$ for some ${a}$ in the dual space ${V^*}$ and ${c\in {\mathbb R}}$).

Moreover, we could define convex sets via convex functions:

Definition 3 A set ${C\subset V}$ is convex if there is a convex function ${f:V\rightarrow {\mathbb R}}$ such that ${C = \{x\ :\ f(x)\leq 0\}}$.

Of course, this only makes sense once we have defined convex functions. Hence, we could also ask the question:

2. What is a convex function?

We can define a convex function by means of convex sets as follows:

Definition 4 A function ${f:V\rightarrow{\mathbb R}}$ from a real vector space into the real numbers is convex, if its epigraph ${\text{epi} f = \{(x,\mu)\ :\ f(x)\leq \mu\}\subset V\times {\mathbb R}}$ is convex (as a subset of the vector space ${V\times{\mathbb R}}$).

The epigraph consists of the points ${(x,\mu)}$ which lie above the graph of the function and carries the same information as the function.

(Let me note that one can replace the real numbers here and in the following with the extended real numbers ${\bar {\mathbb R} = {\mathbb R}\cup\{-\infty,\infty\}}$ if one uses the right extension of the arithmetic and the obvious ordering, but we do not consider this in this post.)

Because epigraphs are not arbitrary convex sets but have a special form (if a point ${(x,\mu)}$ is in an epigraph, then every ${(x,\lambda)}$ with ${\lambda\geq \mu}$ is also in the epigraph), and because the underlying vector space ${V\times {\mathbb R}}$ comes with an order in the second component, some of the definitions for convex sets from above have a specialized form:

From the definition “convex combinations stay in the set” we get:

Definition 5 A function ${f:V\rightarrow {\mathbb R}}$ is convex, if for all ${x,y\in V}$ and ${\lambda\in [0,1]}$ it holds that

$\displaystyle f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y).$

In other words: The secant of any two points on the graph lies above the graph.

From the definition by “intersection of half spaces” we get another definition. Since we added closedness in this case we add this assumption also here. However, closedness of the epigraph is equivalent to lower-semicontinuity (lsc) of the function and since lsc functions are very convenient we use this notion:

Definition 6 A function ${f:V\rightarrow{\mathbb R}}$ is convex and lsc if it is the pointwise supremum of affine functions, i.e., for some set ${S}$ of tuples ${(a,c)\in V^*\times {\mathbb R}}$ it holds that

$\displaystyle f(x) = \sup_{(a,c) \in S} \langle a,x\rangle + c.$

A special consequence if this definition is that tangents to the graph of a convex function lie below the function. Another important consequence of this fact is that the local behavior of the function, i.e. its tangent plane at some point, carries some information about the global behavior. Especially, the property that the function lies above its tangent planes allows one to conclude that local minima of the function are also global. Probably the last properties are the ones which give convex functions a distinguished role, especially in the field of optimization.

Some of the previous definitions allow for generalizations into several direction and the quest for the abstract core of the notion of convexity has lead to the field of abstract convexity.

3. Abstract convexity

When searching for abstractions of the notion of convexity one may get confused by the various different approaches. For example there are generalized notions of convexity, e.g. for function of spaces of matrices (e.g. rank-one convexity, quasi-convexity or polyconvexity) and there are also further different notions like pseudo-convexity, invexity or another form ofquasi-convexity. Here we do not have generalization in mind but abstraction. Although both things are somehow related, the way of thinking is a bit different. Our aim is not to find a useful notion which is more general than the notion of convexity but to find a formulation which contains the notion of convexity and abstracts away some ingredients which probably not carry the essence of the notion.

In the literature one also finds several approaches in this direction and I mention only my favorite one (and I restrict myself to abstractly convex functions and not write about abstractly convex sets).

To me, the most appealing notion of an abstract convex function is an abstraction of the definition as “pointwise supremum of affine functions”. Let’s look again at the definition:

A function ${f:V\rightarrow {\mathbb R}}$ is convex and lsc if there is a subset ${S}$ of ${V^*\times {\mathbb R}}$ such that

$\displaystyle f(x) = \sup_{(a,c)\in S} \langle a,x\rangle + c.$

We abstract away the vector space structure and hence, also the duality, but keep the real-valuedness (together with its order) and define:

Definition 7 Let ${X}$ be a set and let ${W}$ be a set of real valued function on ${X}$. Then a function ${f:X\rightarrow{\mathbb R}}$ is said to be ${W}$-convex if there is a subset ${S}$ of ${W\times {\mathbb R}}$ such that

$\displaystyle f(x) = \sup_{(w,c)\in S} w(x) + c.$

What we did in this definition was simply to replace continuous affine functions ${x\mapsto \langle a,x\rangle}$ on a vector space by an arbitrary collection of real valued functions ${x\mapsto w(x)}$ on a set. On sees immediately that for every function ${w\in W}$ and any real number ${c}$ the function ${w+c}$ is ${W}$ convex (similarly to the fact that every affine linear function is convex).

Another nice thing about this approach is, that it allows for some notion of duality/conjugation. For ${f:V\rightarrow{\mathbb R}}$ we define the ${W}$-conjugate by

$\displaystyle f^{W*}(w) = \sup_{w\in W} \Big(w(x)- f(x) \Big)$

and we can even formulate a biconjugate

$\displaystyle f^{W**}(x) = \sup_x \Big(w(x) - f^{W*}(w)\Big).$

We naturally have a Fenchel inequality

$\displaystyle w(x) \leq f(x) + f^{W*}(w)$

and we may even define subgradients as usual. Note that a conventional subgradient is an element of the dual space which defines a tangent plane at the point where the subgradient is taken, that is, ${a\in V^*}$ is a subgradient of ${f}$ at ${x}$, if for all ${y\in V}$ it holds that ${f(y) \geq f(x) + \langle a,y-x\rangle}$ or

$\displaystyle f(y) - \langle a,y\rangle\geq f(x) - \langle a,x\rangle.$

A ${W}$-subgradient is an element of ${W}$, namely we define: ${w\in\partial^{W}f(x)}$ if

$\displaystyle \text{for all}\ y:\quad f(y) -w(y) \geq f(x) - w(x).$

Then we also have a Fenchel equality:

$\displaystyle w\in\partial^W f(x)\iff w(x) = f(x) + f^{W*}(w).$

One may also take dualization as the starting point for an abstraction.

4. Abstract conjugation

We could formulate the ${W}$-conjugate as follows: For ${\Phi(w,x) = w(x)}$ we have

$\displaystyle f^{W*}(x) = \sup_w \Big(\Phi(w,x) - f(x)\Big).$

This opens the door to another abstraction: For some sets ${X,W}$ (without any additional structure) define a coupling function ${\Phi: X\times W \rightarrow {\mathbb R}}$ and define the ${\Phi}$-conjugate as

$\displaystyle f^{\Phi*}(w) = \sup_x \Big(\Phi(w,x) - f(x)\Big)$

and the ${\Phi}$-biconjugate as

$\displaystyle f^{\Phi**}(x) = \sup_x \Big(\Phi(w,x) - f^{W*}(w)\Big)$

ISMP is over now and I’m already home. I do not have many things to report on from the last day. This is not due the lower quality of the talks but due to the fact that I was a little bit exhausted, as usual at the end of a five-day conference. However, I collect a few things for the record:

• In the morning I visited the semi-planary by Xiaojun Chenon non-convex and non-smooth minimization with smoothing methods. Not surprisingly, she treated the problem

$\displaystyle \min_x f(x) + \|x\|_p^p$

with convex and smooth ${f:{\mathbb R}^n\rightarrow{\mathbb R}}$ and ${0. She proposed and analyzed smoothing methods, that is, to smooth the problem a bit to obtain a Lipschitz-continuous objective function ${\phi_\epsilon}$, minimizing this and then gradually decreasing ${\epsilon}$. This works, as she showed. If I remember correctly, she also treated “iteratively reweighted least squares” as I described in my previous post. Unfortunately, she did not include the generalized forward-backward methods based on ${\text{prox}}$-functions for non-convex functions. Kristian and I pursued this approach in our paper Minimization of non-smooth, non-convex functionals by iterative thresholding and some special features of our analysis include:

• A condition which excludes some (but not all) local minimizers from being global.
• An algorithm which avoids this non-global minimizers by carefully adjusting the steplength of the method.
• A result that the number of local minimizers is still finite, even if the problem is posed in ${\ell^2({\mathbb N})}$ and not in ${{\mathbb R}^n}$.

Most of our results hold true, if the ${p}$-quasi-norm is replaced by functions of the form

$\displaystyle \sum_n \phi_n(|x_n|)$

with special non-convex ${\phi}$, namely fulfilling a list of assumptions like

• ${\phi'(x) \rightarrow \infty}$ for ${x\rightarrow 0}$ (infinite slope at ${0}$) and ${\phi(x)\rightarrow\infty}$ for ${x\rightarrow\infty}$ (mild coercivity),
• ${\phi'}$ strictly convex on ${]0,\infty[}$ and ${\phi'(x)/x\rightarrow 0}$ for ${x\rightarrow\infty}$,
• for each ${b>0}$ there is ${a>0}$ such that for ${x it holds that ${\phi(x)>ax^2}$, and
• local integrability of some section of ${\partial\phi'(x) x}$.

As one easily sees, ${p}$-quasi-norms fulfill the assumptions and some other interesting functions as well (e.g. some with very steep slope at ${0}$ like ${x\mapsto \log(x^{1/3}+1)}$).

• Jorge Nocedalgave a talk on second-order methods for non-smooth problems and his main example was a functional like

$\displaystyle \min_x f(x) + \|x\|_1$

with a convex and smooth ${f}$, but different from Xiaojun Chen, he only considered the ${1}$-norm. His talked is among the best planary talks I have ever attended and it was a great pleasure to listen to him. He carefully explained things and put them in perspective. In the case he skipped slides, he made me feel that I either did not miss an important thing, or understood them even though he didn’t show them He argued that it is not necessarily more expensive to use second order information in contrast to first order methods. Indeed, the ${1}$-norm can be used to reduce the number of degrees of freedom for a second order step. What was pretty interesting is, that he advocated semismooth Newton methods for this problem. Roland and I pursued this approach some time ago in our paper A Semismooth Newton Method for Tikhonov Functionals with Sparsity Constraints and, if I remember correctly (my notes are not complete at this point), his family of methods included our ssn-method. The method Roland and I proposed worked amazingly well in the cases in which it converged but the method suffered from non-global convergence. We had some preliminary ideas for globalization, which we could not tune enough to retain the speed of the method, and abandoned the topic. Now, that the topic will most probably be revived by the community, I am looking forward to fresh ideas here.

Today I report on two things I came across here at ISMP:

• The first is a talk by Russell Luke on Constraint qualifications for nonconvex feasibility problems. Luke treated the NP-hard problem of sparsest solutions of linear systems. In fact he did not tackle this problem but the problem to find an ${s}$-sparse solution of an ${m\times n}$ system of equations. He formulated this as a feasibility-problem (well, Heinz Bauschke was a collaborator) as follows: With the usual malpractice let us denote by ${\|x\|_0}$ the number of non-zero entries of ${x\in{\mathbb R}^n}$. Then the problem of finding an ${s}$-sparse solution to ${Ax=b}$ is:

$\displaystyle \text{Find}\ x\ \text{in}\ \{\|x\|_0\leq s\}\cap\{Ax=b\}.$

In other words: find a feasible point, i.e. a point which lies in the intersection of the two sets. Well, most often feasibility problems involve convex sets but here, the first one given by this “${0}$-norm” is definitely not convex. One of the simplest algorithms for the convex feasibility problem is to alternatingly project onto both sets. This algorithm dates back to von Neumann and has been analyzed in great detail. To make this method work for non-convex sets one only needs to know how to project onto both sets. For the case of the equality constraint ${Ax=b}$ one can use numerical linear algebra to obtain the projection. The non-convex constraint on the number of non-zero entries is in fact even easier: For ${x\in{\mathbb R}^n}$ the projection onto ${\{\|x\|_0\leq s\}}$ consists of just keeping the ${s}$ largest entries of ${x}$ while setting the others to zero (known as the “best ${s}$-term approximation”). However, the theory breaks down in the case of non-convex sets. Russell treated problem in several papers (have a look at his publication page) and in the talk he focused on the problem of constraint qualification, i.e. what kind of regularity has to be imposed on the intersection of the two sets. He could shows that (local) linear convergence of the algorithm (which is observed numerically) can indeed be justified theoretically. One point which is still open is the phenomenon that the method seems to be convergent regardless of the initialization and that (even more surprisingly) that the limit point seems to be independent of the starting point (and also seems to be robust with respect to overestimating the sparsity ${s}$). I wondered if his results are robust with respect to inexact projections. For larger problems the projection onto the equality constraint ${Ax=b}$ are computationally expensive. For example it would be interesting to see what happens if one approximates the projection with a truncated CG-iteration as Andreas, Marc and I did in our paper on subgradient methods for Basis Pursuit.

• Joel Tropp reported on his paper Sharp recovery bounds for convex deconvolution, with applications together with Michael McCoy. However, in his title he used demixing instead of deconvolution (which, I think, is more appropriate and leads to less confusion). With “demixing” they mean the following: Suppose you have two signals ${x_0}$ and ${y_0}$ of which you observe only the superposition of ${x_0}$ and a unitarily transformed ${y_0}$, i.e. for a unitary matrix ${U}$ you observe

$\displaystyle z_0 = x_0 + Uy_0.$

Of course, without further assumptions there is no way to recover ${x_0}$ and ${y_0}$ from the knowledge of ${z_0}$ and ${U}$. As one motivation he used the assumption that both ${x_0}$ and ${y_0}$ are sparse. After the big bang of compressed sensing nobody wonders that one turns to convex optimization with ${\ell^1}$-norms in the following manner:

$\displaystyle \min_{x,y} \|x\|_1 + \lambda\|y\|_1 \ \text{such that}\ x + Uy = z_0. \ \ \ \ \ (1)$

This looks a lot like sparse approximation: Eliminating ${x}$ one obtains the unconstraint problem \begin{equation*} \min_y \|z_0-Uy\|_1 + \lambda \|y\|_1. \end{equation*}

Phrased differently, this problem aims at finding an approximate sparse solution of ${Uy=z_0}$ such that the residual (could also say “noise”) ${z_0-Uy=x}$ is also sparse. This differs from the common Basis Pursuit Denoising (BPDN) by the structure function for the residual (which is the squared ${2}$-norm). This is due to the fact that in BPDN one usually assumes Gaussian noise which naturally lead to the squared ${2}$-norm. Well, one man’s noise is the other man’s signal, as we see here. Tropp and McCoy obtained very sharp thresholds on the sparsity of ${x_0}$ and ${y_0}$ which allow for exact recovery of both of them by solving (1). One thing which makes their analysis simpler is the following reformulation: The treated the related problem \begin{equation*} \min_{x,y} \|x\|_1 \text{such that} \|y\|_1\leq\alpha, x+Uy=z_0 \end{equation*} (which I would call this the Ivanov version of the Tikhonov-problem (1)). This allows for precise exploitation of prior knowledge by assuming that the number ${\alpha_0 = \|y_0\|_1}$ is known.

First I wondered if this reformulation was responsible for their unusual sharp results (sharper the results for exact recovery by BDPN), but I think it’s not. I think this is due to the fact that they have this strong assumption on the “residual”, namely that it is sparse. This can be formulated with the help of ${1}$-norm (which is “non-smooth”) in contrast to the smooth ${2}$-norm which is what one gets as prior for Gaussian noise. Moreover, McCoy and Tropp generalized their result to the case in which the structure of ${x_0}$ and ${y_0}$ is formulated by two functionals ${f}$ and ${g}$, respectively. Assuming a kind of non-smoothness of ${f}$ and ${g}$ the obtain the same kind of results and especially matrix decomposition problems are covered.

Next Page »